neural network ( 201931042_muhammad agung nugroho)

 

Neural Network merupakan kategori ilmu Soft Computing. Neural Network sebenarnya mengadopsi dari kemampuan otak manusia yang mampu memberikan stimulasi/rangsangan, melakukan proses, dan memberikan output. Output diperoleh dari variasi stimulasi dan proses yang terjadi di dalam otak manusia. Kemampuan manusia dalam memproses informasi merupakan hasil kompleksitas proses di dalam otak. Misalnya, yang terjadi pada anak-anak, mereka mampu belajar untuk melakukan pengenalan meskipun mereka tidak mengetahui algoritma apa yang digunakan. Kekuatan komputasi yang luar biasa dari otak manusia ini merupakan sebuah keunggulan di dalam kajian ilmu pengetahuan.

Fungsi dari Neural Network diantaranya adalah:

  1. Pengklasifikasian pola
  2. Memetakan pola yang didapat dari input ke dalam pola baru pada output
  3. Penyimpan pola yang akan dipanggil kembali
  4. Memetakan pola-pola yang sejenis
  5. Pengoptimasi permasalahan
  6. Prediksi

Sejarah Neural Network

Perkembangan ilmu Neural Network sudah ada sejak tahun 1943 ketika Warren McCulloch dan Walter Pitts memperkenalkan perhitungan model neural network yang pertama kalinya. Mereka melakukan kombinasi beberapa processing unit sederhana bersama-sama yang mampu memberikan peningkatan secara keseluruhan pada kekuatan komputasi.

Gambar 2.1 McCulloch & Pitts, penemu pertama Neural Network

Hal ini dilanjutkan pada penelitian yang dikerjakan oleh Rosenblatt pada tahun 1950, dimana dia berhasil menemukan sebuah two-layer network, yang disebut sebagai perceptron. Perceptron memungkinkan untuk pekerjaan klasifikasi pembelajaran tertentu dengan penambahan bobot pada setiap koneksi antar-network.

Gambar 2.2 Perceptron

Keberhasilan perceptron dalam pengklasifikasian pola tertentu ini tidak sepenuhnya sempurna, masih ditemukan juga beberapa keterbatasan didalamnya. Perceptron tidak mampu untuk menyelesaikan permasalahan XOR (exclusive-OR). Penilaian terhadap keterbatasan neural network ini membuat penelitian di bidang ini sempat mati selama kurang lebih 15 tahun. Namun demikian, perceptron berhasil menjadi sebuah dasar untuk penelitian-penelitian selanjutnya di bidang neural network. Pengkajian terhadap neural network mulai berkembang lagi selanjutnya di awal tahun 1980-an. Para peneliti banyak menemukan bidang interest baru pada domain ilmu neural network. Penelitian terakhir diantaranya adalah mesin Boltzmann, jaringan Hopfield, model pembelajaran kompetitif, multilayer network,  dan teori model resonansi adaptif.

Komentar

Postingan populer dari blog ini

Perceptron

Artificial Intelligence